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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

ARRANGEMENT OF BODIES COF REVCLUTION IN SUPERSONIC
FILOW TO REDUCE WAVE DRAG
By Morris D. Friedman

Summary

The wave drag of a combination of slender bodles of revolution at
zero angle of attack is studied with a view to determining the arrange-

.ments for which the total drag is a minimum. Linearized theory is used

to calculate the pressure distribution in the field surrounding the
bodies. The interference drag coefficient is computed for different
arrangements.

The special cases of two bodies and of a ‘three-body combination with
bilateral symmetry are considered. The bodles treated are of the form
determined by Sears and Hasck as having minimum wave drag for prescribed
volume and length. They also have equal fineness ratios. Numerleal
calculaetions of the drag coefficlent of interference are carried out and
curves are drawn which show the relative positions at which minimum drag
occurs.

A three-body configuration is found for which the total wave drag
is about 35 percent less than the sum of the individual wave dregs of
the three bodies.

INTRODUCTION

The dreg of a body of revolution in supersonic flow has been con-
sidered by von Kérmén, Hasck (references 1 and 2), and others. Haack
and Sears (references 2 and 3) have determined theoretical body shapes
for which the wave or pressure drag 1s a minimum. Such bodies have
Important present-day flight applications since this wave drag, as an
additional form of drag at supersonic speeds, limits the performence of
modern aircraft.
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drag is of interest. Different arrangements of the bodies of revolution
at zero angle of attack are investigated and that combination which has
the smallest combined wave drag is determined. A practical combination
would consist of a large body or fuselage and/or two smaller bodies
which could represent elther wing nacelles or tip tanks. In particular,
the drag coefficient for the case of two slehder bodles of equal fine-
ness ratio (ratio of total length to maximum diameter) and unequal
lengths is congidered. (See fig. 1l.) The procedure to be outlined,
however, permits generalization, for the body shape chosen, to any num-
ber of bodies of any relative size.

SYMBOLS
a speed of sound
b sbscissa of center of body of revolution
c constant, the value of which determines the fineness ratic
Rmax®
mS
Dt
Cpr _ecoefficient of interference drag (%5
Cpg drag coefficlent of the configuration based on the totael fron-
tal area of the configurstion
CP presgure coefficlent
Dt drag change due to interaction of body pressure Pields
B complete elliptic Integral of the second kind of modulus Xk
2
Bo = E
=
Fo - K
K complete elliptic integral of the first kind of modulus k
k modulus of the complete elliptic integrals
L path of integration
m half-length of body
M Mach number <§)
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5 free-stream dynemic p}essure
r cylindricel coordinate (v y2+ z2)
Yo particulsr value of r
R radius of a section
Rmsx ‘radius pf maximm section
s cross-gectional area of body or bodies
\'i " free-gtream velocity
X;¥,2 rectangulsr coordinates
8 M2 .1
€ argument of the elliptiec integrsls of the third kind
Ao term which occurs in the eclrcular case of the elliptic integral
of the third kind
3 dummy varisble of integration
¢ perturbation velocity potential
Subscripts
1 parent body
2 satellité body

I,IT,TIT regiong of integration

t combinatlion ags a whole
GENERAT. CONSIDERATTIONS

The type of configuration studied 1s 1llustrated in figure 1. It
consigts of a large and a small body each of the form having minimum
wave drag for given volume and length and each of the same fineness ratio.
The large body is slituated on the axig with its center at the origin.
The smeller body has 1its axis parallel to the axis of the large body and

CReT
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may be within the flow field of the large body. The equation for the
shape of such bodies, which may be supposed to be created by distributing
sources and sinks along an axis, is given by Haack (reference 2) as

RR =c¢ [m® - (x-b)z]a/2 < (1)

with b = 0 <for the parent and b =b for the satellite body. (For
b = 0, this formula 1s the expression for a thin body of revolution of
length 2m with center at the origin and finenese ratio 2m/2Rmax.)

To calculate the interference drag of such a conflguration, two
possibilities must be congidered:

1. Only one of the bodies 1s within the disturbed flow fleld of
the other. '

2, Each body is in the disturbed flow field from the other.

When one of the bodles lies within the disturbed flow field of the
other, the effects of the flow fleld in which this body is located must
be considered. In other words, if all or part of elther body is behind
the Mach wave from the nose of the other body the streamlines will be
distorted end & pressure will be exerted by the flow field of one body
on the other,

The potentiel field which repults from the interaction of the flow
fields consists of the sum of the individusl potentisals and an interfer-
ence potentlal. In the cases when there are multiple reflections
between the bodles a serles of Interference potentials may occur. Since
the interference potentisls are ususlly of higher order of smallness,
they will be assumed negligible. Of course, at very high Mach numbers,
or when the bodies are relatively close to each other, the effect of
this interference may not be negligible.

The interference drag coefficient due to the location of a body in
the flow fileld of snother can be evaluated by integrating the produect of
the additional, disturbed, pressure at a point and the slope of the body
surface at that point. In a similar mammer, the interferenice drag coef-
ficient for the case when each body lies within the disturbed flow fleld
of the other can be calculated. '

As & preliminary step, therefore, it is necessary to find an expres-
sion for the pressure around each body for the whole region behind the
Mech wave from the nose of the body.
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METHOD OF CALCULATION
Tne Presgsure Field Sufrounding A Siﬁgle Body
Under the assumptions of linearigzed theory, the shape of a slender
body of revolution is described by the distribution along an axis of
sources and sinks which satisfy the potential equation and the boundary

conditions of uniform flow at infinity. Under these assumptions the
source strength is given by

2xf1(x) = V-g—jsé

where S 1is the expression for the area of a section.

The pressure coefficient, in this theory, is found from the relation

°=-F%x | ()
where, as glven 1n reference 2, BCP/Bx 1s given by
_pr '
39 _ Fr(e)as (3)

ox nose & (x-£)2 - p2r2

Here . L : . - _.

PI(E) = -3°v[m2 - 2(&-b)2 :l _

2 L/nz - (ep)2

is the expression for the source st’reng’bh in terms of the following
coordinates of integration:

g2=M2_-1

2 2

r2=y24 z

When f'(E) is replaced in equation (3) by its equivalent, and the
substitution 1s mede for B%x in equation (2), the pressure coeffi-
clent 1s found to be determined by the integrsal
[m2 - 2(&-b)Z]at

- (£-0)21[(x-8)% - 85°]

(%)

= '3°J; o [m2
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This integral is elliptic, and the limits of integration and the method
of solution depend on the followlng toree regions (see Tig. 2): -

Region I is bounded by the Mach sftercone from the nose and
the Mach forecone from the tail. The limits of integra-
tion are b-m and x-8r.

Reglon II is bounded by the Mach forecone from the tail and
the Mach aftercone from the tail. The limits of integration
again are b-m and x-8r.

Region IIT is bounded by the Mach aftercone from the tall and
infinity. The l1imits of integration are b-m and b+m.

With these limits the elliptic integrals for the different regions -
are complete and the solutions are:l

Region I ..~ .. . . e e
Cp = ~3re _{mz 4 28r(mib-x) - 2(x-b)2] Fo(kr) -
5 (mipr)2 - (x0)2 :
[(m+pr)® - (x-b)Z] Eo(k1) + )
2(x-b) JTHpr)E - (2012 Aclie, &) | (5)
where . L . - o

2 2
ky fv//(m-sr)z - (x-b)zigl = sip=1 [EBrix-b
(m+pr)” - (x-b) N 2m

and the change of variable

—J.~//O&+Br+b'x)(§+m-b)
“= e (m=-Br-b+x) (m+b-£)

transforms equation (4) into normasl elliptic form.

1solution of these integrals wae accomplished with the aid of a table of
elliptic integrals compiled by Mr. Paul F. Byrd of the
Ames Aeronsutical Laboratory.

ST _ o
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Region IT .

Cp = %8 {m(m+2Br+2b-2x)Fo(kII)-MBrEo(kIIWF(X‘b)J’-"Tﬂ? Ao(kII’QII)}
25 mpr (6)

_ ) - @een)® T
kII [ Lmar s ° X~-b+Brim

and the change of varisble

where

2r(&-b+m)
(x-b-Br+m)(x+Br-£¢)

u = gn31

transforms equatiorn (4) into normal elliptic form.

Region IIT

= o ( *)‘Z"C ( . )2 {(X-b-ﬁr)zFQ(kIII) + [(x-0)% - (m-pr)®]
X-b)< - (m-pr :

Eo(krrr) 1 - 2(x-b) & (x-b)Z - (m-pr)Z Ao(krTT, 5111)} _ (7)

where

4prm ¢ x+Br-m~b
S s rr = sin-y /XBr-m-b
I / (x-b) 2 = (m-pr)@’ T X+Br+m-b

and the change of variable

(xtpr-m-b) (& -b-m)
2m(x+Br-¢ )

u = sn—t

transforme equation (4) into normal elliptic form.
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The functions Fg, Eo, and Ao are tabulated in reference L, where
they are algo defined as:

Fo(k) = 2 k(k)
Eo(k) = £-E(x)

Do(k,8) = Eo(k)F(k',8) + Folx)E(k',E) - Fo(x)F(k',t)

where . _
K(k) complete elliptic integral of the first kind of modulus k
E(k) complete elliptic integral of the second kind of modulus k

ggi:’ég incomplete elliptic integrals of the first and second kind of
? modulus k! (= & 1-k%), and argument §{, respectively

Thus, according to linearized theory, equations (5), (6), aund (7)
completely determine the pressure field in the reglon behind the Mach
wave from the nose of a body of revolution of the prescribed shepe. An
1sometric sketch of the pressure coefficient at fixed values of the
radial distance is shown in figure 3.

Interference Drag Coefficient

An Inspection of figure 3 shows that the gradlent of the curve of
the pressure coefficient in the stream direction chsnges from negative
to pogitive behind the center of the body.  Thls reglon of positive
pressure gradients is a zone of favorable buoyancy in the pressure field
around the body. Therefore, & small body placed anywhere within this
zone should have a negative interference drag (i.e., a thrust) due to
this pressure field which should cause a decrease in the combined dreg.

If the pressure coefficient surrounding a body at a given latersl
distance r = ro be called Cpy, the interference drag coeffilcient may
then be calculated from the expression

CDI=——"-§f Cpy 2t — dx (8)
TRmax nose ax
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where Rpgx 18 the radius of the frontal ares of the reference body.
Substitution of the respective values for the quantities in equation (8)
yields )

b+m "
A ,cpt{-&rc (x) /T oVpax ()

Actually, the integral in equation (8) or (9) is made up of one or more
Integrals depending on the number of regions in which the small body is
Jocated. The limits of .integration depend on the parameters b, m, r,

and B which determine the regions of integration. This integral must

be computed numerically.

For a clearer exposition of the msthematical computations in the
cases where interference exists, it is necessary to distinguish between
the bodies. In the present case, if the central body situated on the
x axis be denoted by the subscript 1 snd the other body by the sub-
geript 2, then, depending on which body is being acted upon, the Inter-
ference drag coefficient is

CDI =.__l_2fb2+m2 épt {-31!C2(x'b2) [Il'-lg2 - (X-b2)2 ]1/2 dx (lO)
"Rmax” Jb p-mp . .

or
1 by+my : '
Cpp = == /; . Cps {-3nc1(x-b1) [my® - (x-bl)zl“z}dx (11)

Equations (10) and (11) esre, to a first spproximation, the drag
coefficients due to the effect of body 1 on 2 and body 2 on 1, respec-
tively. The integration extends from the nose to the tail of the body
which is in the disturbed flow field. Similsrly, for the calculation,

- to a first approximetion, of the drag cocefficients due to the inter-

action of the bodies, formilas {10} and (11) are both used.

) The preceding equations permit the calculation of the interference
drag coefficlent for any arrangement of bodiles. In particular, equa-
tions (10) and (11) apply to the special case when two ldentical bodies
are symmetrically placed wilth respect to a central body so that each

body may be in the flow field of the others. The formulas may be applied

to any configuration, whatever the Iinterference pattern.
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Numerical Calculations

As an exploratory investigation, the simple case of a small body -
having one-half the length of the largé body was chosen. Thils combine-
tion is derived by assigning the following velues to the parameters ln
equation (1):

c m b
¢y = 0.005 my=2 . bi=0

The equations which describe the bodies are

' R,2 = 0.005 (4-x%)%/2

Ry° = .01 [1 - (x-b)

2]3/2
It is to be noted that each body has the flneness ratioc 10 but that one
1s twice as long as the other,

The pressure coefficient depends on 8 and ro. The dependence 1is
on PBrg, rather than on either parameter individually, and the calcula-_. .
tions were carried out for PBro = 0.5m,, 1.0my, and 2.0my; where, as. .
shown previously m, = 1. A change in B and In ro which keeps pro
invariant will not change the calculatioms.

The drag coefficient, with respect to the frontsl ares, ofathe
. 2
individual body is given by Haack (reference 1) as 7= (Bmax s Or In

8 m
0.09r 2 L
—g The interference drag coefficlient 1s computed from
formule (9). For each value of Bras therefore, the remaining parame-

ter b, in this case the longitudinal distance between the centers of
the bodies, is given values between -3mp and +im,,

this case

The interference drag coefficlents based on frontal area of the
smell body are sketched for different %Ef and él in figure L. Since
the reversibility of drag (reference 5) holds true, the curves would be
expected to be symmetrical sbout the line é: = 0 (where é% i1s the

nondimensional longitudinal distance between the centers of the bodies).
The symmetry 1in the figure is s measure of the accuracy of the numerical
calculations. From the figure, 1t is evident thet minimum drag occurs .

when the small body 1s close to the large one %FQ = O.%) and with
2
its center just forward of the tail wave from the large body. -



NACA RM A51I20 SRS 11

It may be observed that, while the interference drag varies markedly
with fore and aft position, for the range of fr, considered the maxi-
mum favorable interference that can be obtained generally decreases with
increasing separstion between the bodies. It is interesting to note
that dreg minimums occur whenever the center of the satellite body is
Just forward of the tall Mach wave of the parent body. Also of interest
is the fact that, in the case when both bodies had their centers on the
vertical axis, the loweet drag occurred when the lateral separation
parameter (Bro) was equal to the length of the small body and higher
drags resulted as the bodles were brought closer together.

In figure 5, there are plotted.the values of the total.drag coeffi-.
cient, based on the total frontel ares of & three-body ccmbination with
bilateral symmetry, agalnst the longitudinsel distance between the centers
of the parent and satellite bodies. Since Interaction between all three
bodies occurred only for the lowest value of Brg (= 0.5mp) where it was
found to be negligible, the interference drag coefficients previously
calculsted for the two-body configuration could be used directly to
determine the total drag of the three-body configuration. As & conse-
gquence, the variations in drag coefficient are gimilar to those of
figure 4. Agein the lowest drag occurred at fro = 0.5m, and was
approximately 35 percent less than the drag of the three bodies without
interference.

Because of the unusual shapes of the curves in figure L, it was
considered advisable to investigete the drag intersctlion of e combins-
tion of bodies of different shape. The slender pointed body derived by
Jones and Margolis (reference 6) was selected for this purpose since for
the. seme fineness ratio the drag coefficient is comperable to that of
the Sears-Haaeck body. The interference drag coefficienis of a combina-
tion of two such bodies with my/my = 2 were calculated for b = 0, and
different values of PBry. Reasonsble agreement was obtained with the
results of figure 4 for Prg = 2.0mp and Pro = 1.0mp. In the case when
pro = 0.5my, since the bodies are close together, there is & discrepancy
which may be due to the differences in body geometry.

CONCLUDING REMARKS

It is found that the combined wave drag of a combination of bodies
of revolution can be decreaged if an arrangement 1s chosen which takes
advantage of a favorable pressure zone which exists behind the center of
each body.

In the cases discussed, where the ratio of the lengths of the
bodies was 2 to 1 but the fineness ratios were equal, mmerical calcula-
tions showed that the maximum favorable interference occurred when the

ﬁm
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center of .the small body was jJust forwerd of the stern Mach wave from o
the large body and the bodies were close together. For the range of .-
Bro considered the magnitude of the favorable interference generally

decreased with increasing separation between the bodies.

In the cage of a bilaterally symmetrical arrangement of three bodles
wlth a lateral sepsration equal to one-quarter of the length of the small
body thé total wave drag was found to be 35 percent less than the com-
bined wave drag of the three bodles.

Netional Advisory Committee for Aeronautics
Ames Aeronasutical Laboratory
Moffett Flield, Calif., Sept. 20, 1951 i
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